Licencia: CC0 1.0 Universal

Nivel 4 • Aritmética • Combinatoria • Teoría (07)

Problemas similares

Los siguientes problemas tienen unas resoluciones tan parecidas que en matemáticas se consideran el mismo problema cuando se estudian en general.

- ① ¿De cuántas maneras se pueden escribir las letras de la palabra ESE?
- ② ¿De cuántas maneras se pueden escribir las letras de la palabra ASONANCIA?

En los dos problemas consideramos un conjunto con cierto número de elementos (que llamaremos «n»), con uno o más elementos repetidos algún número de veces (que llamaremos « m_1 », « m_2 », « m_3 », etc.) que hay que colocar de todas las maneras posibles.

En el problema (1), n=3, m_1 =2 (la «**E**»); en el (2), n=9, m_1 =3 (la «**A**»), m_2 =2 («**N**»)

Permutaciones con repetición

Llamamos permutaciones con repetición de «n» elementos estando repetidos algunos de ellos « m_1 », « m_2 »,... veces a la cantidad de posibles ordenaciones de esos elementos. Se escribe $P_n^{m_1,m_2,\ldots}$.

Fórmula de las permutaciones con repetición

Las permutaciones de «n» elementos estando repetidos algunos de ellos « m_1 », « m_2 », « m_3 »,... veces es:

$$P_n^{m_1, m_2, \dots} = \frac{n!}{m_1! \cdot m_2! \cdot \dots}$$

Ejemplo 1:
$$P_3^2 = \frac{3!}{2!} = \frac{3 \cdot 2!}{2!} = 3$$

Ejemplo 2:
$$P_6^{3,2} = \frac{6!}{3! \cdot 2!} = \frac{6 \cdot 5 \cdot 4 \cdot 3!}{3! \cdot 2 \cdot 1} = \frac{6 \cdot 5 \cdot 4}{2} = 3 \cdot 5 \cdot 4 = 60$$

Idea de la demostración

Ilustramos la idea con el problema (1). La palabra **ESE** tiene tres letras, pero la «**E**» está repetida. Para razonar, imaginamos que podemos distinguir las dos «**E**» y para ello les ponemos subíndices: «**E**₁**SE**₂». Entonces las P_3 son:

$$E_1SE_2$$
 (ESE) E_1E_2S (EES) SE_1E_2 (SEE) SE_2E_1 (SEE) E_2SE_1 (ESE) E_2E_1S (EES)

Vemos que cuando intercambiamos las dos « \mathbf{E} » se obtiene el mismo resultado (señalado con el mismo color), luego hay que dividir P_3 entre P_2 .

Propiedad del factorial de un número natural

Cuando hay que dividir factoriales entre sí podemos utilizar esta propiedad para hacer simplificaciones y hacer operaciones que no podríamos hacer con la calculadora. Y la demostración es obvia.

$$n! = n \cdot (n-1)!$$

Ejemplo 3. Hemos utilizado esta propiedad en los cálculos anteriores.

Ejemplo 4:
$$\frac{72!}{70!} = \frac{72 \cdot 71 \cdot 70!}{70!} = 72 \cdot 71 = 5112$$

Observa que $72! = 72 \cdot 71! = 72 \cdot 71 \cdot 70!$ aplicando dos veces la propiedad.

URL: http://pedroreina.net/cms/n4art-com-tr07.pdf