Curso de Matemáticas de Secundaria

Pedro Reina • http://pedroreina.net/cms

Nivel 5 • Álgebra • Inecuaciones • Teoría (01)

Inecuación lineal con dos incógnitas

Una inecuación lineal con las dos incógnitas «x» e «y» tiene alguna de estas expresiones (para los valores adecuados de «a», «b» y «c»):

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ax+by < c	ax+by > c	ax+by ≤ c	ax+by ≥ c
---	--	-----------	-----------	-----------	-----------

También se pueden escribir así (con los valores opuestos del «c» anterior):

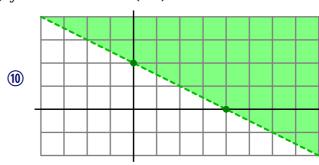
daibyic to an analytic to an analytic to an analytic to	ax+by+c < 0	ax+by+c>0	$ax+by+c \leq 0$	$ax+by+c \ge 0$
---	-------------	-----------	------------------	-----------------

Ejemplos de inecuaciones lineales con dos incógnitas

① $2x-3y < 6$	② $2x-3y > 6$	$ 3 2x - 3y \leqslant 6 $	
(5) $2x-3y-6 < 0$		① $2x-3y-6 \le 0$	(8) $2x-3y-6 \ge 0$

Soluciones de una inecuación lineal con dos incógnitas

- * Todas las inecuaciones lineales con dos incógnitas tienen infinitas soluciones.
- * La mejor manera de manejarlas consiste en dibujarlas en un plano.
- * Las soluciones ocupan completamente un semiplano, que solemos distinguir rellenándolo de algún color.
- * Si se sustituye en la inecuación el signo de desigualdad por el signo de igualdad, se obtiene la ecuación de una recta que define dos semiplanos del plano: uno de ellos corresponde a las soluciones y el otro no.
- * Si el signo de la desigualdad es «<» o «>», los puntos de la recta no son solución de la inecuación; solemos distinguirlo dibujando la recta con un trazo discontinuo de color similar al del semiplano.
- **★** Si el signo de la desigualdad es «≤» o «≥», los puntos de la recta no son solución de la inecuación, y solemos distinguirlo dibujando la recta con un trazo continuo de color similar al del semiplano.


Ejemplos

Vamos a resolver simultáneamente estas dos inecuaciones: $9 \times 2y \le 4$ $x \times 2y \le 4$ En los dos casos empezamos por dibujar la recta de ecuación $x \times 2y = 0$ calculando dos puntos de ella: $x = 0 \Rightarrow y = 2 \rightarrow punto (0,2)$; $y = 0 \Rightarrow x = 4 \rightarrow punto (4,0)$.

Para distinguir qué semiplano corresponde a las soluciones de cada inecuación, elegimos un punto cualquiera del plano para ver si verifica cada inecuación o no. Sabemos que si un punto de un semiplano verifica la inecuación, todos los puntos del semiplano también la verifican y si un punto no la verifica, ninguno lo hace.

El punto (0,0) verifica la inecuación (9) y no verifica la (10). Por tanto:

Licencia: CC0 1.0 Universal

URL: http://pedroreina.net/cms/n5alg-ine-tr01.pdf